Conserved mechanisms regulate outgrowth in zebrafish fins.

نویسنده

  • M Kathryn Iovine
چکیده

Regulation of size is one of the fundamental problems in biology. One general strategy has been to identify molecules required for cell growth and cell proliferation within an organ. This has been particularly revealing, identifying cell-autonomous pathways involved in cell growth, survival and proliferation. In order to identify pathways regulating overall limb growth and morphology, experiments have evaluated gene expression, transplanted and removed tissues, and knocked out genes. This work has provided a vast amount of information identifying molecular mechanisms regulating limb axis formation, outgrowth, and pattern formation. Using the zebrafish fin, genetic, cellular and molecular strategies have also been employed to follow both normal patterns of fin growth and growth in fin mutants. This review will focus on cellular and molecular regulation of the outgrowth and patterning of the zebrafish caudal fin during regeneration, and will emphasize similarities to other systems. Future perspectives describe opportunities using the zebrafish fin to reveal mechanisms underlying the regulation of final size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration.

When amputated, the fins of adult zebrafish rapidly regenerate the missing tissue. Fin regeneration proceeds through several stages, including wound healing, establishment of the wound epithelium, recruitment of the blastema from mesenchymal cells underlying the wound epithelium, and differentiation and outgrowth of the regenerate. We screened for temperature-sensitive mutations that affect the...

متن کامل

19-P017 Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration

Two hallmarks of vertebrate epimorphic regeneration are a significant increase in the proliferation of normally quiescent cells and a re-activation of genes that are active during embryonic development. It is unclear what the molecular determinants are that regulate these events and how they are coordinated. Zebrafish have the ability to regenerate several compound structures by regulating cell...

متن کامل

Id2a is required for hepatic outgrowth during liver development in zebrafish

During development, inhibitor of DNA binding (Id) proteins, a subclass of the helix-loop-helix family of proteins, regulate cellular proliferation, differentiation, and apoptosis in various organs. However, a functional role of Id2a in liver development has not yet been reported. Here, using zebrafish as a model organism, we provide in vivo evidence that Id2a regulates hepatoblast proliferation...

متن کامل

The development of the paired fins in the Zebrafish (Danio rerio)

In the present study, we describe the structure and normal development of the zebrafish (Danio rerio) paired fins. Particularly, we focus on the structure of the apical epidermis and on endoskeletal morphogenesis. Endoskeletal development proceeds differently in the pectoral and pelvic fins. Whereas in both fins major parts of the endoskeletal girdle develop within the fin bud mesenchyme, the p...

متن کامل

Dermoskeleton morphogenesis in zebrafish fins

Zebrafish fins have a proximal skeleton of endochondral bones and a distal skeleton of dermal bones. Recent experimental and genetic studies are discovering mechanisms to control fin skeleton morphogenesis. Whereas the endochondral skeleton has been extensively studied, the formation of the dermal skeleton requires further revision. The shape of the dermal skeleton of the fin is generated in it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemical biology

دوره 3 10  شماره 

صفحات  -

تاریخ انتشار 2007